
A Fortran 90 Interface for OpenGL:
Revised January 1998

William F. Mitchell

U.S. DEPARTMENT OF COMMERCE
Technology Administration

National Institute of Standards

and Technology

Information Technology Laboratory

Gaithersburg, MD 20899-0001

QC NIST
100

U56

NO. 61 34
19§8





NISTIR 6134

A Fortran 90 Interface for OpenGL:
Revised January 1998

William F. Mitchell

U.S. DEPARTMENT OF COMMERCE
Technology Administration

National Institute of Standards

and Technology

Information Technology Laboratory

Gaithersburg, MD 20899-0001

April 1998

U.S. DEPARTMENT OF COMMERCE
William M. Daley, Secretary

TECHNOLOGY ADMINISTRATION
Gary R. Bachula. Acting Under Secretary

for Technology

NATIONAL INSTITUTE OF STANDARDS
AND TECHNOLOGY
Raymond G. Kammer, Director





A Fortran 90 Interface for OpenGL: Revised January 1998

William F. Mitchell*

Information Technology Laboratory

National Institute of Standards and Technology

Gaithersburg, MD 20899

william.mitchell@nist.gov

Abstract

It is important to provide a good Fortran interface to OpenGL and related libraries

for scientific visualization in mathematical software. OpenGL currently provides a Fortran

interface which can be used by FORTRAN 77 or Fortran 90 programs. However, this

interface relies upon several extensions to the FORTRAN 77 standard. By using the new
features of Fortran 90 it is possible to define an interface to OpenGL that does not depend

on any extensions to the standard and provides access to the full functionality of OpenGL.
This document defines such an interface and supersedes NISTIR 5985.

1 Introduction

Most mathematical software for scientific computing is written in Fortran, and most scientific

computing apphcations require 3D graphics for visuahzation. It is therefore important to pro-

vide a good Fortran interface to OpenGL and related hbraries. OpenGL [5] currently provides

a Fortran interface [1] which can be used by FORTRAN 77 or Fortran 90 programs. However,

this interface rehes upon several extensions to the FORTRAN 77 standard. Although some

of these extensions are commonly used by Fortran compilers (e.g., REAL*4, REAL*8, INTE-

GER*4) and some have been made standard in Fortran 90 [2] (e.g., INCLUDE, identifiers up

to 31 characters, underscore character in identifiers), others are not widely supported (e.g.,

LOGICAL*!, INTEGER*!, INTEGER*2, identifiers longer that 3! characters), which makes

OpenGL difficult or impossible to use from some Fortran processors. Also, some of the OpenGL
functionahty cannot be achieved by any Fortran processor under the current Fortran binding

(e.g., arbitrary length character string function result).

By using the new features of Fortran 90 it is possible to define an interface to OpenGL that does

not depend on any extensions to the standard and provides access to the fuU functionahty of

OpenGL. It can also increase the capability of robustness and portabihty in the user apphcation

code, and increase the similarity between the Fortran and C interfaces.

‘Contribution of NIST, not subject to copyright in the United States. OpenGL is a registered trademark of

Silicon Graphics Gomputer Systems.

!



2 W. F. MitcheU

This document defines a Fortran 90 interface for OpenGL using features that are in Fortran 90

but not in FORTRAN 77. It is equally applicable to Fortran 95, and will most likely be valid for

future Fortran standards. It is not intended to replace the existing Fortran interface (henceforth

referred to as the FORTRAN 77 interface) at this time, since the existing interface will be

required on systems that are stiU using a FORTRAN 77 compiler. The Fortran 90 interface

is intended to provide an alternative through which the Fortran 90 programmer can achieve

robustness and portability in an OpenGL application program. A reference implementation of

the Fortran 90 interface has been made available to the public at http:/ /math.nist.gov/f90gl.

This document supersedes NISTIR 5985 [4]. The Fortran 90 interface for OpenGL described in

this document differs slightly from the one defined in NISTIR 5985. A summary of the changes

is contained in Appendix A.

The major differences between the FORTRAN 77 and Fortran 90 interfaces are:

• The interface is accessed through modules, rather than INCLUDE lines. Among other

advantages of modules, this provides explicit interfaces to the OpenGL procedures for

improved robustness.

• Kind type parameters are provided for matching Fortran types to C types. This elimi-

nates the need for nonstandard “*byte” declarations. It also provides a mechanism for

transparently handling type mismatches on systems in which the Fortran processor does

not support aU the C types used by OpenGL, for increased portability.

• Fortran derived types are provided where C structs are used in the interface. This increases

the similarity between the Fortran and C interfaces, and provides a mechanism through

which the implementor can encapsulate whatever interface data is required.

• The Fortran functions corresponding to C functions that return a pointer to a character

string now return a pointer to an array of characters. This increases the similarity between

the Fortran and C interfaces, and adds the capability of arbitrary length character string

return values.

• Extremely long names are truncated to 31 characters to comply with the Fortran 90

standard.

• The Fortran 90 interface to OpenGL is defined entirely on the Fortran side of the For-

tran/C interface, so the issues associated with interoperability between Fortran and C are

hidden from the user.

This interface explicitly covers the OpenGL 1.1 core hbrary [5], and the GLU 1.2 library [6],

but it also applies to earlier versions and it is anticipated that it will apply to later versions.

The principles laid out in this interface can also be applied to related libraries, toolkits, and

OpenGL extensions. Some entities from the Graphics Library Utility Toolkit (GLUT) Version

3 [3] and the OpenGL tk toolkit are used for illustration in this document, even though they

are not part of OpenGL proper.



A Fortran 90 Interface for OpenGL 3

2 Interface Definition

This section describes and discusses the Fortran 90 interface to OpenGL.

2.1 Modules

The Fortran 90 interface to OpenGL is accessed through modules. The modules provide access

to kind type parameters, named constants, procedures, and derived types (structures).

The module OPENGL_KINDS contains the definitions of the kind type parameters as described

in Section 2.2. This module is not normally used directly in application code, but is inherited

through the other modules. The kind type parameters are defined as integers of default kind

with the PARAMETER attribute.

The module OPENGL_GL provides access to the core OpenGL library procedures and named
constants, and the definitions in OPENGL_KINDS. It may also provide access to one or more

OpenGL extensions, along with the related named constants and derived types.

Additional modules provide access to related libraries, and are given a descriptive name begin-

ning with OPENGL. For example, the module OPENGL_GLU contains the procedures, named
constants and derived types for the OpenGL Utility Library (GLU).

2.2 Types

2.2.1 Numeric

The correspondence between Fortran and C numeric types is achieved through use of kind

type parameters. The module OPENGL_KINDS contains the definition of these parameters

such that the C representation of an entity of a given OpenGL type agrees with the Fortran

representation of an entity of the corresponding type and kind whenever possible. When the

corresponding representation is not provided by the Fortran processor, the lack of said repre-

sentation remains transparent to the user.

The OpenGL numeric types and the corresponding Fortran 90 TYPE(KIND) are:

GLbyte INTEGER(GLBYTE)
GLubyte INTEGER(GLUBYTE)
GLshort INTEGER(GLSHORT)
GLushort INTEGER(GLUSHORT)
GLint INTEGER(GLINT)
GLuint INTEGER(GLUINT)
GLenum INTEGER(GLENUM)
GLbitfield INTEGER(GLBITFIELD)
GLsizei INTEGER(GLSIZEI)



4 W. F. MitcheU

GLfioat REAL(GLFLOAT)
GLclampf REAL(GLCLAMPF)
GLdouble REAL(GLDOUBLE)
GLclampd REAL(GLCLAMPD)

The user’s code should always specify the kind type parameter for all actual arguments passed

to OpenGL procedures to ensure correspondence between C and Fortran types and portability

of the user’s code:

• Variables should have the kind type parameter in the declaration

• Constants should have the kind type parameter attached (e.g., l.O-GLFLOAT)

• Expressions should evaluate to a value with the appropriate kind type parameter

The Fortran standard does not specify what kind type parameters are to be provided for each

type. It is possible that some OpenGL types do not have a corresponding TYPE(KIND) on a

given Fortran processor. On current systems this is highly unlikely for the float, double and

long integer types, but may occur with the short integer types. In this case, the implementation

of the interface will match Fortran and C types in a manner that is transparent to the user.

There are at least two approaches that can be taken for this. In the first approach the interface

accesses the OpenGL library routine that accepts the available type, rather than the type

expected according to the procedure name. In the second approach the C procedure that is

called by the Fortran procedure converts the arguments to the type specified by the OpenGL
definition. If there are any return values of the missing type, they are converted to the available

type before returning to the Fortran procedure.

For example, suppose GLshort is a 2-byte integer, GLint is a 4-byte integer, and the Fortran

compiler supports 4-byte integers but not 2-byte integers, and assume the Fortran 90 interface

is implemented by a set of “wrapper” functions. Then GLSHORT wiU be set to the same value

as GLINT, which is the kind type parameter such that INTEGER(GLINT) is a 4-byte integer.

Consider an invocation of glVertex2s. In the first approach, the wrapper function simply invokes

the C glVertex2i. In the second approach, the C procedure invoked by the Fortran procedure

will accept an argument of type GLint, convert it to type GLshort, and invoke the C glVertex2s.

For the user’s application code, this is aU transparent. The user declares the argument to be

of type INTEGER(GLSHORT). If the equivalent of a GLshort is supported by the Fortran

processor, then the short integer is used; if not, then the equivalent of GLint is used with one of

the above methods for handling mismatched type. The user’s code works in both environments

unchanged.

Note that the equivalent of GLbyte (probably a 1-byte integer) may be supported by the Fortran

processor, may require promotion to the kind GLSHORT, or may require promotion to the kind

GLINT depending on what kinds of integers are supported by the Fortran processor.

2.2.2 Logical

The OpenGL logical type and the corresponding Fortran 90 TYPE(KIND) is:



A Fortran 90 Interface for OpenGL 5

GLboolean LOGICAL(GLBOOLEAN)

The type GLboolean is typically a 1-byte entity with the value 0 representing false and nonzero

representing true. The Fortran processor may or may not support a 1-byte logical type. The
kind type parameter GLBOOLEAN, defined in the module OPENGL_KINDS, is normally set

to the kind type parameter for a 1-byte logical if it is supported, or the default kind type

parameter for LOGICAL if it is not. If the 1-byte logical is not supported, or the Fortran

representation of logical values does not correspond to the C representation, then the interface

routines wiU perform appropriate type conversions similar to the type conversions described in

the section on numeric types.

2.2.3 Character

Some procedures in related libraries and toolkits have character string arguments. In the

Fortran 90 interface, the dummy argument is given the type CHARACTER(LEN=*). At the

Fortran 90 interface, this is a Fortran character string. Any conversion required to match the

C character string (such as null termination) is handled by the implementation of the interface.

OpenGL functions that return a character string are also no problem in Fortran 90. In C the

resulting string can be arbitrarily long. In Fortran, this is obtained by declaring the function

result to be a pointer to an array of type CHARACTER(LEN=1), and allocating the pointer

inside the function. The user can obtain the number of characters using the SIZE intrinsic

function, and, if the result is assigned to a pointer variable, can deallocate the memory.

2.2.4 Pointer

Some OpenGL procedures, or procedures in related libraries and toolkits, may require the user

to maintain the value of a C pointer. Fortran does not provide pointers in this sense, so this

use of pointers is restricted to obtaining a C pointer from an OpenGL procedure, and passing

it to another procedure as an actual argument. Thus what is required is a means of storing

the bit patterns contained in C pointer variables. The user may also copy a C pointer from

one variable to another, which precludes the use of numeric types which are allowed to change

the representation (for example, by normalizing the exponent). In the Fortran 90 interface, the

derived type TYPE(GLCPTR) is provided for storing C pointers. An implementation of the

interface is free to define the components of this type in any way that meets the requirements.

Some applications require that a C pointer be compared to NULL, thus a nuU pointer value

of TYPE(GLCPTR) is provided, and the operator == is extended to compare two vari-

ables of TYPE(GLCPTR). The null pointer value is a named constant defined in module

OPENGL-KINDS, is called GLNULLPTR, and has a value that is equal to the C NULL
pointer in the sense that the operator == will return .TRUE, if GLNULLPTR is compared to

a variable of TYPE(GLCPTR) that has been assigned the C NULL pointer.



6 W. F. MitcheU

2.2.5 Structures

Some related libraries and toolkits define structures that are used as arguments to the proce-

dures. The Fortran 90 interface defines derived types corresponding to these structures. The

name of the derived type is obtained from the name of the structure, subject to the same

name modification rules used for the Fortran 90 procedure names in section 2.3. The derived

type definitions are contained in the module for the given library or toolkit. The components

of the derived type contain whatever information is required to fulfill the specification of the

procedures that operate on that type. Since some components may be useful to the user, they

have the PUBLIC attribute. An example of where the components are useful to the user is

provided by the tk toolkit where a tk procedure sets the components of a derived type, and a

GLU procedure needs the values in the components:

TYPE(TK_RGBImageRec) , POINTER :: IMAGE

IMAGE => tkRGBImageLoadC TABLE_TEXTURE )

ERR = gluBuild2DMipiiiaps(GL_TEXTUREJ2D, 3_GLINT, IMAGE'/.sizeX, &

IMAGE'/.sizeY, GL_RGB, GL_UNSIGNED:BYTE , IMAGE’/.data)

For functions that return a C pointer to an OpenGL struct, the Fortran 90 function returns a

Fortran pointer of the derived type. (This is an exception to the rule for handling pointers given

in section 2.2.4.) If the C pointer is NULL, then the Fortran pointer is nullified (disassociated),

so that the C test “if (cptr == NULL)” is achieved with “IF (.NOT. ASSOCIATED(fptr))”,

where cptr and fptr are pointer variables in C and Fortran, respectively.

For example, consider the GLU type gluQuadricObj. The Fortran 90 type

TYPE gluQuadricObj

TYPE(GLCPTR) : : addr

! there may be other components

END TYPE gluQuadricObj

is defined in module OPENGL_GLU. The function gluNewQuadric would have the effect of

FUNCTION gluNewQuadric ()

TYPECgluQuadricObj ) , POINTER :: gluNewQuadric

ALLOCATE (gluNewQuadric)

gluNewQuadric’/,addr = c_gluNewQuadric ()

IF (gluNewQuadric*/,addr == GLNULLPTR) THEN

DEALLOCATE (gluNewQuadric)

NULLIFY(gluNewQuadric)

ENDIF

END FUNCTION gluNewQuadric



A Fortran 90 Interface for OpenGL 7

2.2.6 Void

Many OpenGL procedures use the type GLvoid for an argument that may be one of several dif-

ferent types. Generic interfaces provide this capability in Fortran 90. Procedures with a GLvoid

argument have a generic interface (with the usual name for the procedure as defined in section

2.3) to a set of specific routines, one for each type specified by the OpenGL definition. Addi-

tionally, it interfaces to a specific routine that accepts an argument of type TYPE(GLCPTR) to

allow the GLvoid argument to be a C pointer returned by a prior call to an OpenGL procedure.

Processors that do not support the short integers require additional work here, but it remains

transparent to the user. Consider the situation where the Fortran processor does not support

the kind of integer that corresponds to GLshort. Then GLSHORT is the same as GLINT, so

there is no specific routine for the type INTEGER(GLSHORT). If the user passes an argument

of type INTEGER(GLSHORT), then the specific routine that is called is the one with dummy
argument of type INTEGER(GLINT). But, in aU such core OpenGL and GLU routines there

is another argument that teUs what type the GLvoid argument is to be interpreted as. If that

argument indicates that the user is passing a INTEGER(GLSHORT), but the specific routine

for INTEGER(GLINT) is called because GLSHORT is the same as GLINT, then the interface

will handle the mismatched types as described in section 2.2.1. The situation is similar for

GLBYTE, except that GLBYTE could be either GLSHORT or GLINT, depending on the

Fortran processor.

2.3 Procedures

AU OpenGL procedures are available in the Fortran 90 interface. The argument Usts and return

values are identical, subject to the equivalences described in section 2.2. C functions of type void

are Fortran subroutines; C functions of other types are Fortran functions of the corresponding

type. AU of the procedure names corresponding to OpenGL procedures are generic names in

the Fortran 90 interface.

The procedure names in the Fortran 90 interface are derived from the C names as foUows:

• Case is insignificant. This conforms to the Fortran 90 requirement that lower case letters

are equivalent to the corresponding upper case letters except in a character context.

• Any names that are longer than 31 characters are truncated to 31 characters. This con-

forms to the Fortran 90 requirement that the maximum length of a name is 31 characters.

There are no names that require truncating in the core OpenGL and GLU Ubraries.

2.4 Defined constants

AU OpenGL defined constants are provided as named constants in module OPENGL_GL. These

are integers of the appropriate kind with the PARAMETER attribute and the same value as

in the C interface.



8 W. F. MitcheU

The names for the Fortran 90 named constants are derived from the OpenGL defined constants

as follows:

• Case is insignificant.

• Any names that are longer than 31 characters are truncated to 31 characters. There are

no names that require truncating in the core OpenGL and GLU libraries.

• Any names that are not unique after discarding case are replaced with a suitable descrip-

tive name. Specifically, the tk toolkit contains lower case key constants, TK_a through

TK_z, and upper case key constants, TK_A through TK_Z. In module OPENGL_TK the

lower case key constants are named TKJLC-A through TK_LC-Z, with LC standing for

lower case. There are no case dependent defined constants in the core OpenGL and GLU
libraries.

2.5 Dummy procedures

Some routines in related libraries and toolkits take a procedure as an argument. Whenever

possible the explicit interface of these routines provided by the Fortran 90 interface to OpenGL
provides an explicit interface for the dummy procedure. When this is not possible (for example,

when the dummy procedure contains an argument of C type (void *) for which there is more

than one valid type), the dummy procedure has an implicit interface. There are no routines

in the core OpenGL, GLU and GLUT libraries that require a dummy procedure to have an

implicit interface.

When the argument is used as a callback function, the procedure may allow NULL as the value

of the argument to indicate that the corresponding callback is to be disabled. For example,

GLUT uses this technique. When this is the case, the Fortran 90 interface for this library

provides the symbol library-prefixNJJLLFJJ'^^C which can be passed in place of NULL. For

example, the interface to GLUT provides the symbol GLUTNULLFUNC. Each library requires

its own NULLFUNC in order to preserve the independence of the modules corresponding to

each library.

2.6 Array arguments

The explicit interfaces of the Fortran 90 interface declare array arguments to be assumed-size

arrays, i.e., declared with DIMENSION(*). They are not assumed-shape arrays, declared with

DIMENSION(:), because most Fortran 90 processors pass assumed-shape arrays as dope vectors

containing the dimensions of the array in addition to the starting address. The wrappers would

thus be more complicated, to extract the address from the dope vector, and less portable since

there is no standard for the dope vectors. There is no loss of functionahty by using assumed-size

arrays.



A Fortran 90 Interface for OpenGL 9

Fortran 90 Fortran 90 C C

Figure 1; Example implementation using wrappers.

3 Implementation

In the FORTRAN 77 binding, the user calls C functions from the Fortran program, leading

to portability issues and the requirement for the binding to address the interfacing of Fortran

and C procedures. The Fortran 90 interface to OpenGL does not address this issue. The user

interface is entirely on the Fortran side of the Fortran/C interface, therefore the Fortran/C

interface is contained entirely inside the Fortran 90 interface to OpenGL. It is anticipated that

most vendor implementations will be for a specific system with specific Fortran and C compilers.

The containment of the Fortran/C interface leaves these implementors free to use whatever

system dependent techniques are required for the Fortran/C interface without affecting the

interface to the user application code. In the case of an implementor attempting to provide

an implementation that is portable over several Fortran/C/OS combinations, it is left to the

implementor to determine how to achieve portability, however the reference implementation

may be a useful guideline.

There is no requirement on the actual architectural design of the Fortran 90 interface to

OpenGL. The only requirement is that the aforementioned modules be provided, and that

they provide access to the kind type parameters, procedures, named constants, and derived

types described above. However it is anticipated that most implementations wiU simply pro-

vide “wrapper” functions on top of an existing OpenGL implementation. Here the wrapper

functions would most likely faU on both the Fortran and C sides of the interface. An example

of how this might be implemented is illustrated in figure 1.

In this approach, the Fortran 90 names for aU the OpenGL procedures are defined in generic

interfaces in module OPENGL-GL. Some of them are used simply to rename the existing

FORTRAN 77 interface. Other generic interfaces may include interfaces to module procedures

which call new wrapper functions. In particular, this would be used when type conversions are

used because the Fortran processor does not support the requested type or kind, when one of

the arguments is of type GLvoid with several valid types for that argument, or when one of the

arguments is a derived type.

In this example, module OPENGL_GL would also contain the definition of aU the named

constants as integer values with the PARAMETER attribute and would also use module



10 W. F. MitcheU

OPENGL_KINDS and provide access to the definitions in OPENGL_KINDS to any program

unit that uses OPENGL_GL.

4 Potential problems
4.1

Assumptions on compilers

The Fortran 90 interface to OpenGL is considerably more robust and portable than the FOR-
TRAN 77 interface. However, until there is a standard for inter-language calling sequences,

it must be assumed that the compilers provide a sufficient inter-language calling convention.

Most Fortran 90 and C compilers satisfy this requirement in a processor dependent manner.

The next revision of the Fortran standard is planned to incorporate interoperabffity features to

facilitate caffing C procedures from Fortran programs. These interoperability features should

allow a portable implementation of the Fortran 90 interface for OpenGL.

4.2

Preserved addresses

Some OpenGL and GLU procedures internally set a C pointer to one of the arguments so that

the argument can be used by a different procedure called later. In the Fortran 90 interface, these

arguments are assumed-size arrays with the TARGET attribute. It is the user’s responsibility

to insure that the actual argument wiU persist and may be modified by a procedure to which

it is not an argument. One means of achieving this is to pass a whole array with the TARGET
and SAVE attributes as the actual argument. Note that using an expression or array section in

this context is likely to fail. The OpenGL 1.1 core and GLU procedures and arguments effected

by this are:

4.3

Unsigned int

glFeedbackBuffer

glSelectBuffer

glEdgeFlagPointer

glTexCoordPointer

glColorPointer

glIndexPointer

glNormalPointer

glVertexPointer

gluNurbsCurve

gluNurbsSurface

gluPwlCurve

gluTessVertex

buffer

buffer

pointer

pointer

pointer

pointer

pointer

pointer

uknot, ctlarray

uknot, vknot, ctlarray

array

data

Fortran does not provide unsigned integer types; signed integers of the same size are used for

these types. The Fortran intrinsic function IBSET can be used for setting values in which the



A Fortran 90 Interface for OpenGL 11

leading bit is a 1. For
.

example, the hexadecimal pattern 8000000A can be set in either an

assignment statement or an initialization expression using IBSET as follows;

INTEGER (GLUINT) : : U = IBSET(10,31) ! use bit pattern for 10 and set 31st bit

4.4 Array order

The user should remember that Fortran stores multidimensional arrays in column major or-

der, whereas C stores them in row major order. Some multidimensional Fortran arrays may
require transposition. The exception is the transformation matrices passed to glLoadMatrix

and glMultMatrix which, as a 4x4 array, are assumed to be in column major order.

5 System installation

The location of the software for the Fortran 90 interface to OpenGL is system dependent. The
OpenGL documentation provides this information for the user.

5.1 Libraries

The Fortran 90 interface procedures may be placed in either the same libraries as the OpenGL
procedures (e.g., libGL, libGLU, etc.) or in separate libraries (e.g., libfOOGL, libfOOGLU, etc.).

5.2 Module files

Many Fortran 90 compilers generate a file containing module information. The name of the file

is usually the module name followed by a compiler dependent suffix, for example opengLgl.mod.

If the compiler generates module files, these are located in the same directory as the OpenGL
include files (e.g., gl.h). Some Fortran 90 compilers provide a command line option for specifying

the location of module files (e.g., -I); with other compilers the module files will have to be copied

(or linked) to the user’s source code directory.

6 Reference implementation

A reference implementation of the Fortran 90 interface for OpenGL is available in the software

package called f90gl available from http://math.nist.gov/f90gl. Version 1.1 of the reference

implementation covers the OpenGL 1.1 core, GLU 1.2, GLUT 3.6, and some extensions.



12 W. F. MitcheU

References

[1] Allen Akin, OpenGL FORTRAN Binding Proposal,

littp://www.sgi.com/Technology/openGL/fortran.html

[2] ANSI, American National Standard for Programming Language - Fortran - Extended, ANSI,

New York, 1992.

[3] Mark J. Kilgard, The OpenGL Utility Toolkit (GLUT) Programming Interface API Version

3, http://reality.sgi.com/mjk_asd/spec3/spec3.html

[4] William F. MitcheU, A Fortran 90 Interface for OpenGL, NISTIR 5985, 1997.

[5] Mark Segal and Kurt Akeley, The OpenGL Graphics System: A Specification (Version 1.1),

http:/ /www.sgi.com/Technology /openGL/glspecl . 1 /glspec.html

[6] Kevin P. Smith and Chris Frazier, The OpenGL Graphics System Utility Library,

http://reaUty.sgi.com/mjk_asd/GLUspec.ps.gz



A Fortran 90 Interface for OpenGL 13

A Differences from NISTIR 5985

This document supersedes NISTIR 5985 [4], The Fortran 90 interface for OpenGL described

in this document differs slightly from the one defined in NISTIR 5985. This appendix contains

a summary of the changes.

• Removed f90 prefix from procedure names, kind type parameters, and derived types.

Fortran processors are required to keep module procedure names distinct from other

instances of the same name, so the f90 prefix is not required to avoid name space clashes.

Similarly, there can be no conflicts with kind type parameters and derived types in the

modules.

• Renamed modules to start with OPENGL. instead of f90gl. With the f90 prefix removed

from other entities, the module names were the only names beginning with f90. It was

suggested that f90 be removed from the names to avoid possible confusion about the

applicability of this interface to Fortran 95 and future versions of Fortran.

• Explicitly state that the module OPENGL.GL provides access to the definitions in the

module OPENGL.KINDS. This was ambiguous.

• Changed the definition of GLCPTR (a type for storing C pointers) to a derived type,

relaxed the requirements on the definition of the nuU pointer, and extended == to compare

TYPE(GLCPTR). The previous requirement using character strings to store C pointers

can be inefficient on some processors due to ahgnment requirements. Hiding it inside a

derived type gives the implementor more flexibility. The explicit definition of the value

of the nuU pointer may not agree with some processors.

• Replaced the mixed PUBLIC/PRIVATE recommendation for components of derived types

with the requirement that the components be PUBLIC. Mixed PUBLIC/PRIVATE at-

tributes in a derived type are not standard conforming.

• Added the requirement that the OpenGL procedure names be generic names in the inter-

face. The distinction between generic and specific names is great enough that it should

be specified if the names are to be generic. Some of the procedures require a generic

interface, so for consistency they are aU to be generic.

• Changed the interface of dummy procedures from implicit to expUcit. Explicit inter-

faces are preferable whenever possible, and currently there are no examples of dummy
procedures that require an implicit interface.

• Relaxed the definition of NULLFUNC to be a symbol that is not necessarily an exter-

nal procedure. This removes a potential conflict between NULLFUNC and the expUcit

interface of the associated dummy procedure.

• Modified the discussion of OpenGL procedures saving pointers to dummy arguments (sec-

tion 4.2), and added the requirement that such arguments have the TARGET attribute.

• Removed suggested use of BOZ to set unsigned integers. Setting the highest order bit

with BOZ is not standard conforming.



14 W. F. MitcheU

• Editorial changes that do not affect the definition of the interface.






